references

Homepage

  1. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).
  2. Foster, N. L. et al. Quality improvement in neurology: Mild cognitive impairment quality measurement set. Neurology 93, 705–713 (2019).

providers page

  1. Foster, N. L. et al. Quality improvement in neurology: Mild cognitive impairment quality measurement set. Neurology 93, 705–713 (2019).
  2. Houmani, N. et al. Diagnosis of Alzheimer’s disease with electroencephalography in a differential framework. PLoS One 13, e0193607 (2018).
  3. Alzheimer’s Association. 2018 Alzheimer’s Disease Facts and Figures. Alzheimers Dement 14, 367–429 (2018).
  4. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).
  5. Alzheimer’s Association. 2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 16, 391+ (2020).

science page

  1. Horvath, A. et al. EEG and ERP biomarkers of Alzheimer’s disease: A critical review. Front. Biosci. 23, 183–220 (2018).
  2. Babiloni, C. et al. Classification of single normal and Alzheimer’s disease individuals from cortical sources of resting state EEG rhythms. Front. Neurosci. 10, (2016).
  3. Neto, E., Allen, E. A., Aurlien, H., Nordby, H. & Eichele, T. EEG spectral features discriminate between Alzheimer’s and vascular dementia. Front. Neurol. 6, 1–9 (2015).
  4. Kwak, Y. T. Quantitative EEG findings in different stage of Alzheimer’s Disease. J. Clin. Neurophysiol. 23, 457–462 (2006).
  5. Monastra, V. J. et al. Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: An initial validation study. Neuropsychology 13, 424–433 (1999).
  6. Monastra, V. J., Lubar, J. F. & Linden, M. The development of a quantitative electroencephalographic scanning process for attention deficit-hyperactivity disorder: Reliability and validity studies. Neuropsychology 15, 136–144 (2001).
  7. Polich, J. Updating P300: An integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148 (2007).
  8. Bennys, K., Rondouin, G., Benattar, E., Gabelle, A. & Touchon, J. Can event-related potential predict the progression of mild cognitive impairment? J. Clin. Neurophysiol. 28, 625–632 (2011).
  9. Olichney, J. M. & Hillert, D. G. Clinical applications of cognitive event-related potentials in Alzheimer’s disease. Phys. Med. Rehabil. Clin. N. Am. 15, 205–233 (2004).
  10. Cecchi, M. et al. A clinical trial to validate event-related potential markers of Alzheimer’s disease in outpatient settings. Alzheimer’s Dement. 1, 1–8 (2015).
  11. Gorus, E., De Raedt, R., Lambert, M., Lemper, J.-C. & Mets, T. Reaction times and performance variability in normal aging, Mild Cognitive Impairment, and Alzheimer’s disease. J. Geriatr. Psychiatry Neurol. 21, 204–218 (2008).
  12. Tamm, L. et al. Reaction time cariability in ADHD: A review. Neurotherapeutics 9, 500–508 (2012).
  13. Ballard, J. C. Assessing attention: Comparison of response-inhibition and traditional continuous performance tests. J. Clin. Exp. Neuropsychol. 23, 331–350 (2001).
  14. Alzheimer’s Association. 2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 16, 391+ (2020).
  15. Alzheimer’s Association. 2019 Alzheimer’s Disease Facts and Figures. Alzheimers Dement 15, 321–87 (2019).
  16. Livingston, G. et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396, 413–446 (2020).
  17. Ngandu, T. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 15, 1–9 (2015).
  18. Walsh, C., Drinkenburg, W. H. I. M. & Ahnaou, A. Neurophysiological assessment of neural network plasticity and connectivity: Progress towards early functional biomarkers for disease interception therapies in Alzheimer’s disease. Neurosci. Biobehav. Rev. 73, 340–358 (2017).